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Course overview
Lecture: 1 x 2h

I perceptron (1958-60s);
I backpropagation (1986-90s);
I deep learning (2006-today).

Practical work: 1 x 4h
I python + pytorch;

Evaluation: final exam + practical work.

Lecture sources:
A. Kurenkov (2015). A ’Brief’ History of Neural Nets and Deep Learning.
http://www.andreykurenkov.com/writing/a-brief-history-of-neural-nets-
and-deep-learning/

I. Goodfellow, Y. Bengio, and A. Courville (2016). Deep Learning.
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Biological neurons

Extremely
complicated cells.

In a nutshell:
I Receives electrical pulses from dendrites (input).
I Accumulates electrical potential.
I Above a certain threshold, fires off along its axon (output).
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McCuloch-Pitts artificial neuron
A simplified mathematical model of how neurons operate.

∑
1

x1

x2

xn

w0 (b)

w1

w2

wn

inputs

weights

weighted sum step function

s =
n∑

i=0

wixi σ(s) =

{
1 if s ≥ 0

0 otherwise

Can model logical gates: AND, OR, NOT.

Remember linear SVM ? h(x) = sign(wᵀx + b).

W. S. McCulloch and W. Pitts (1943). A logical calculus of the ideas immanent
in nervous activity.
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Rosenblatt’s perceptron
D a training set of input-output pairs (x, y), with x P R and y P {0, 1}.

Start with random weights, and iterate over the training examples

I if target is 1 and output is 0:

I increase weights wi where xi is positive
I decrease weights wi where xi is negative

I if target is 0 and output is 1:

I decrease weights wi where xi is positive
I increase weights wi where xi is negative

Formally: w← w + α(y − σ(wᵀx))x, with α the learning rate.

Gradient descent ?

F. Rosenblatt (1957). The perceptron, a perceiving and recognizing
automaton. Tech. rep. Project Para., Cornell Aeronautical Laboratory
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Rosenblatt’s perceptron

Custom hardware implementation:
Mark I Perceptron.

I input: 20× 20 photocells

I weights: potentiometers

I learning: electric motors

Classifies simple shapes correctly.
Machine learning is born!

«The Navy revealed the embryo of an electronic computer today that it
expects will be able to walk, talk, see, write, reproduce itself an be conscious of
its existence [. . . ] Dr. Frank Rosenblatt, a research psychologist at the Cornell
Aeronautical Laboratory, Buffalo, said Perceptrons might be fired to the planets

as mechanical space explorers. »
New-York Times, 1958
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1969: first AI winter
Critical analysis by Minsky and Papert (MIT lab).

Linearity limits, can not learn the simple XOR function.
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Non-linearity requires a multilayer perceptron (MLP).
Rosenblatt’s algorithm does not work for multiple layers.

=⇒ Massive disillusionment, freeze to funding and publications.

M. Minsky and S. Papert (1969). Perceptrons. An Introduction to
Computational Geometry.
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Stochastic gradient descent
Gradient descent (GD): θ ← θ − α∆θ, with α the learning rate.
=⇒ reaches a local minima if α small enough (or decaying).

Batch GD: cost over the whole training set

∆θ =
∂
∑

(x,y)PD L(h(x), y)

∂θ

=
∑

(x,y)PD

∂L(h(x), y)

∂θ

Stochastic GD: cost over a single example (x, y) P D

∆θ =
∂L(h(x), y)

∂θ

Mini-batch GD: cost over a small subset Dmb Ă D

∆θ =
∑

(x,y)PDmb

∂L(h(x), y)

∂θ

Often, many noisy updates converge faster than one unbiased update.
Also, can escape local minima !
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Error back-propagation
Idea proposed in the 70s, rediscovered in the 80s by several groups.

x z h L(h, y)

input outputhidden

f (x) g(z)

Chain rule of calculus:
∂h

∂x
=
∂h

∂z

∂z

∂x
.

=⇒ all we need is L and σ differentiable.

P. Werbos (1974). Beyond Regression: New Tools for Prediction and
Analysis in the Behavioral Sciences. PhD thesis. Harvard University,
Cambridge, MA

D. E. Rumelhart, G. E. Hinton, and R. J. Williams (1986). Learning
representations by back-propagating errors.
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Error back-propagation

Example (squared error, identity activation function)

Forward x z h

input outputhidden

w (1)x + b(1) w (2)z + b(2)
err = 1

2 (y − h)2

Backward ∂err
∂h

∂h
∂z

∂z
∂x

y − hw (2)w (1)

∆w (2) =
∂err

∂h

∂h

∂w (2)
= (y − h)(w (1)x + b(1)) ∆b(2) =

∂err

∂h

∂h

∂b(2)
= (y − h)

∆w (1) =
∂err

∂h

∂h

∂z

∂z

∂w (1)
= (y − h)w (2)x ∆b(1) =

∂err

∂h

∂h

∂z

∂z

∂b(1)
= (y − h)w (2)
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Activation functions

Identity: linear model...

Step function: non-differentiable...

Logistic (sigmoid)
σ(x) =

1
1 + exp−x

∂σ(x)

∂x
= σ(x)(1− σ(x))

Hyperbolic tangent (tanh)
σ(x) =

2
1 + exp−2x − 1

∂σ(x)

∂x
= 1− σ(x)2
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Multilayer feed-forward neural network

Hidden layer 1
z(2)

Hidden layer 2
z(1)

Input layer
x

Output layer
h

σ(W(1)x + b(1)) σ(W(2)z(1) + b(2)) σ(W(3)z(2) + b(3))

Demo time: http://playground.tensorflow.org
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MLPs are universal approximators

A single hidden layer with
sufficiently many hidden
units can approximate any
X 7→ Y mapping to any
desired degree of accuracy.

I other words: infinite
capacity.

Hidden layerInput layer Output layer

Strong theoretical argument at the time. Still, are NNs useful ?

I k-NN has infinite capacity;

I decision trees have infinite capacity;

I requires an exponential number of hidden neurons.

K. Hornik, M. B. Stinchcombe, and H. White (1989). Multilayer
feedforward networks are universal approximators.
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Convolutional neural networks

Typical CNN layer: convolution + max pooling

I convolutions → weight sharing, less free parameters
I max pooling → translation invariance, dimensionality reduction

Leverages spatial / temporal structures

I image processing (2D spatial convolutions)
I signal processing (1D temporal convolution)
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Handwritten digit recognition: LeNet-5

SUN 4/260
16.67 MHz, 128 MB

I tanh activations
I L2 loss
I Stochastic GD

https://youtu.be/
FwFduRA_L6Q

At some point in the
90s, read about
10-20% of all the
checks in the US.

Y. LeCun et al. (1989). Backpropagation Applied to Handwritten Zip Code
Recognition.
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Convolutional neural networks
CNN architecture = strong model prior (regularizer)

I more stable training
I better generalization

Intuition:
I lower layers = low-level features (edges, blobs)
I higher layers = high-level features
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Deep versus shallow networks

Convolutional architectures are a good prior for visual recognition.

19/39



Backpropagation era (1986-90s) CPE 5ETI IMI 2017-18

Recurrent neural networks
Time-delayed connections =⇒ memory.

Can process non i.i.d. data (sequences):

Back-propagation through time (BPTT).
=⇒ vanishing / exploding gradients problem...

http://karpathy.github.io/2015/05/21/rnn-effectiveness/
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The vanishing gradient problem

Chain rule ≈ geometric sequence
I derivatives ∂σ(x)

x < 1 =⇒ vanishing gradient

I derivatives ∂σ(x)
x > 1 =⇒ exploding gradient

Related to:
I activation function σ
I initial weight initialization

Affects MLPs with many layers, and recurrent neural nets.
I hard to train deep networks;
I hard to learn long-term dependencies.
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Limitations

Gradient descent limits: no theoretical guarantee
I non-convex optimization problem (hidden layers)
I quality of the local minimum unknown (gradient descent)

Backpropagation limits: vanishing / exploding gradients
I training of deep / recurrent networks is problematic

Limited computer resources at the time
I training is slow

Outperformed by other models in the 2000s (random forest, SVM).

Despite some irrefutable successes, neural networks lose popularity.
=⇒ Second AI winter.
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2006 Deep belief network (DBN)

Unsupervised layer-by-layer pre-training (weight initialization).
=⇒ successful training of deep neural nets possible.

1.25% error on MNIST without convolutions ! (0.95% with CNNs)

Generative model of digit images (MNIST).

G. E. Hinton, S. Osindero, and Y. W. Teh (2006). A Fast Learning
Algorithm for Deep Belief Nets.
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2006 Resurgence: Deep belief network (DBN)
Generative model: "Looking into the mind of a neural network".

G. E. Hinton, S. Osindero, and Y. W. Teh (2006). A Fast Learning
Algorithm for Deep Belief Nets.
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Computational power
Back-propagation highly parallel by nature.

Why not using GPUs instead of CPUs for training ?
=⇒ 70x speed-up.

DBN training by Google:

I 16000 parallel CPUs

I ∼ 1 billion weights
(Hinton’s 2006 DBN ∼ 1
million)

Computational limitations unlocked.

R. Raina, A. Madhavan, and A. Y. Ng (2009). Large-scale deep
unsupervised learning using graphics processors.

Q. V. Le et al. (2012). Building high-level features using large scale
unsupervised learning.
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2012 Tsunami: AlexNet
Successful supervised training of a deep convolutional network on GPUs.

I one week training on two gaming GPUs (Nvidia GTX 580, 3GB)
I 5 convolutional layers + 3 fully-connected layers
I relu activation functions (non-saturating neurons)
I dropout (regularization)
I data augmentation (cropping + translations)

A. Krizhevsky, I. Sutskever, and G. E. Hinton (2012). ImageNet Classification
with Deep Convolutional Neural Networks.
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2012 Tsunami: AlexNet

A. Krizhevsky, I. Sutskever, and G. E. Hinton (2012). ImageNet Classification
with Deep Convolutional Neural Networks. 28/39
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2012 Tsunami: AlexNet
ImageNet Large Scale Visual Recognition Challenge (ILSVRC) 2012

I crowd-sourced image annotation
I 1000 classes
I 1.3 million training examples

The only NN competitor, AlexNet, wins by a large margin
I 15.3% top-5 error rate, compared to 26.2% for second entry

Next years: overflow of CNN competitors, test error continually decreases
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Modern activation functions

Rectified linear unit (relu)

σ(x) =

{
x if x ≥ 0

0 otherwise

Exponential linear unit (elu)

σ(x) =

{
x if x ≥ 0

exp(x)− 1 otherwise

Google’s activation (swish)
σ(x) =

x

1 + exp−x

=⇒ non-saturating neurons.
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Google deep learning research :)

P. Ramachandran, B. Zoph, and Q. Le (2017). Swish: a Self-Gated
Activation Function.
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Deep learning analogy to spin glasses
«For large-size decoupled networks the lowest critical values [. . . ] are located
in a well-defined band lower-bounded by the global minimum. The number of
local minima outside that band diminishes exponentially with the size of the

network. »

=⇒ local minimum is not a problem with large networks.

A. Choromanska et al. (2015). The Loss Surfaces of Multilayer Networks.
32/39



Deep learning era (2006-) CPE 5ETI IMI 2017-18

Modern gradient descent algorithms

Momentum:

∆θ ← β∆θ + (1− β)
∂L

∂θ
with β P]0, 1[,

θ ← θ − α∆θ.

No momentum Momentum

=⇒ faster convergence, especially with SGD.
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Modern gradient descent algorithms
Nesterov momentum:

∆θ ← β∆θ + (1− β)
∂L

∂θ − αβ∆θ
with β P]0, 1[,

θ ← θ − α∆θ.

=⇒ often a bit faster than vanilla momentum.
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Modern gradient descent algorithms
Adaptive moment estimation (adam): first and second order statistics

m← β1m + (1− β1)
∂L

∂θ
(mean),

v ← β2v + (1− β2)

(
∂L

∂θ

)2
(uncentered variance),

m̂ =
m

1− β1
(bias correction),

v̂ =
v

1− β2
(bias correction),

θ ← θ − α
m̂

√
v̂ + ε

.

=⇒ really fast, used consistently for deep learning.

D. P. Kingma and J. L. Ba (2015). Adam: a Method for Stochastic Optimization.
A. Veit, M. J. Wilber, and S. J. Belongie (2016). Residual Networks Behave Like

Ensembles of Relatively Shallow Networks.
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Residual networks

A residual block

=⇒ state-of-the-art on many tasks
(AlphaGo Zero)

K. He et al. (2015). Deep Residual Learning for Image Recognition.
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Residual networks

Scales up to thousands of layers (but only exploits paths of < 30 layers).

K. He et al. (2015). Deep Residual Learning for Image Recognition.
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Generative Adversarial Networks (GANs)
«Adversarial training is the coolest thing since sliced bread. »

Yann LeCun

Observations x ∼ p(x), samples z P [0, 1]M (latent space).

Generator network G : Z → X .
Discriminator network D : X → [0, 1].
G? = arg maxG Ez[D(G (z))]
D? = arg maxD Ex,z[D(x)− D(G (z))]

Optimal point: Nash equilibrium.

I. J. Goodfellow et al. (2014). Generative Adversarial Nets.
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Realistic face image generation

https://youtu.be/XOxxPcy5Gr4

T. Karras et al. (2017). Progressive Growing of GANs for Improved
Quality, Stability, and Variation.
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