Machine Learning Supervised learning

Maxime Gasse

http://scikit-learn.org

Introduction

Given an observation x, make a prediction \hat{y} .

Example

- ▶ customer bank records → solvency
- ▶ patient symptoms → disease
- ▶ apartment address, surface, year → price
- ▶ mushroom picture → variety

We have a data set \mathcal{D} of previously observed (\mathbf{x}, \mathbf{y}) pairs.

Prediction

Find a mapping ${\bf h}$ from an input space ${\mathcal X}$ to an output space ${\mathcal Y}$,

$$h: \mathcal{X} \to \mathcal{Y}$$
.

Example (regression)

 $\mathcal{Y} = \mathbb{R}^1$. For a given \mathbf{x} , we know $p(\mathbf{y} \mid \mathbf{x})$:

You are asked to predict a value for y. What is your answer?

Bayes-optimal prediction

Cost of $\hat{\mathbf{y}}$ instead of \mathbf{y} ? Loss function:

$$L: \mathcal{Y} \times \mathcal{Y} \to \mathbb{R}_{\geq 0}$$
.

Risk of $\mathbf{h}(\mathbf{x}) = \hat{\mathbf{y}}$? Expected loss:

$$\begin{split} \mathbb{E}_{\mathbf{y}|\mathbf{x}}[L(\hat{\mathbf{y}},\mathbf{y})] &= \sum_{\mathbf{y}} p(\mathbf{y} \mid \mathbf{x}) \times L(\hat{\mathbf{y}},\mathbf{y}) \quad \text{(classification)} \\ &= \int_{\mathbf{y}} p(\mathbf{y} \mid \mathbf{x}) \times L(\hat{\mathbf{y}},\mathbf{y}) d\mathbf{y} \quad \text{(regression)}. \end{split}$$

Bayes-optimal prediction \iff risk-minimization

$$\mathbf{h}^{\star}_{\mathit{L}}(\mathbf{x}) = \operatorname*{arg\,min}_{\hat{\mathbf{y}}} \mathbb{E}_{\mathbf{y}|\mathbf{x}} \mathit{L}(\hat{\mathbf{y}},\mathbf{y}).$$

Example: univariate regression

Popular loss functions for regression:

- squared error: $L_2(\hat{\mathbf{y}}, \mathbf{y}) = \sum_i (\hat{y}_i y_i)^2$;
- ▶ absolute error: $L_1(\hat{\mathbf{y}}, \mathbf{y}) = \sum_i |\hat{y}_i y_i|$;
- ightharpoonup zero-one error: $L_0(\hat{\mathbf{y}},\mathbf{y})=1$ for every $\hat{\mathbf{y}}\neq\mathbf{y}$.

Illustration in \mathbb{R}^1 (y fixed):

How could this affect the risk-minimizer h^* ? Because of uncertainty in $p(y \mid x)...$

Example: univariate regression

For a given x:

 $\mathbf{h}_{I_2}^{\star}(\mathbf{x}) = 1 \text{ (mode)}, \ \mathbf{h}_{I_1}^{\star}(\mathbf{x}) = 0.3 \text{ (median)}, \ \mathbf{h}_{I_2}^{\star}(\mathbf{x}) = 0.51 \text{ (mean)}.$

Plug-in risk minimization

 \mathcal{D} a set of i.i.d. data samples $\{(\mathbf{x}, \mathbf{y})^{(i)}\}_{i=1}^{N}$ drawn from $p(\mathbf{x}, \mathbf{y})$, \mathcal{Q} a restricted probabilistic model (e.g. parametric distribution).

Learn q^* via maximum log-likelihood:

$$\underset{q \in \mathcal{Q}}{\operatorname{arg\,max}} \sum_{i=1}^{N} \log q(\mathbf{y}^{(i)}|\mathbf{x}^{(i)}).$$

Risk-minimizing prediction: $\mathbf{h}^*(\mathbf{x}) = \arg\min_{\hat{\mathbf{y}}} \sum_{\mathbf{y}} q^*(\mathbf{y}|\mathbf{x}) L(\hat{\mathbf{y}}, \mathbf{y}).$

Bayes-optimal under two conditions:

- ▶ statistical sufficiency $\mathcal{D} \approx p$ (e.g. $N \to \infty$);
- ▶ model sufficiency $p \in \mathcal{Q}$ (e.g. \mathcal{Q} unrestricted).

Example: multinomial regression, naive Bayes...

Example: binary classification

Loss function:

$$\begin{array}{c|cccc}
L & \hat{\mathbf{y}} \\
0 & 1
\end{array}$$

$$\begin{array}{c|cccc}
\mathbf{y} & 0 & 0 & \alpha \\
1 & \beta & 0
\end{array}$$

$$\mathbb{E}_{\mathbf{y}|\mathbf{x}}[L(1,\mathbf{y})] = \rho(\mathbf{y} = 0|\mathbf{x}) \times \alpha$$
$$\mathbb{E}_{\mathbf{y}|\mathbf{x}}[L(0,\mathbf{y})] = \rho(\mathbf{y} = 1|\mathbf{x}) \times \beta$$

Bayes-optimal prediction:

$$\mathbf{h}^{\star}(\mathbf{x}) = \left\lceil
ho(\mathbf{y} = 1 | \mathbf{x}) > rac{lpha}{lpha + eta}
ight
ceil.$$

Example: binary classification

Loss function:

$$\begin{array}{c|cccc} L & \hat{\mathbf{y}} \\ \hline & 0 & 1 \\ \hline & 0 & 0 & 2 \\ \mathbf{y} & 1 & 5 & 0 \end{array} \qquad \begin{array}{c} \mathbb{E}_{\mathbf{y}|\mathbf{x}} \\ \mathbb{E}_{\mathbf{y}|\mathbf{x}} \end{array}$$

$$\mathbb{E}_{\mathbf{y}|\mathbf{x}}[L(1,\mathbf{y})] = p(\mathbf{y} = 0|\mathbf{x}) \times 2$$
$$\mathbb{E}_{\mathbf{y}|\mathbf{x}}[L(0,\mathbf{y})] = p(\mathbf{y} = 1|\mathbf{x}) \times 5$$

Bayes-optimal prediction:

$$\mathbf{h}^{\star}(\mathbf{x}) = [p(\mathbf{y} = 1 | \mathbf{x}) > 28.6\%]$$
.

Direct risk minimization

 \mathcal{D} a set of i.i.d. data samples $\{(\mathbf{x},\mathbf{y})^{(i)}\}_{i=1}^N$ drawn from $p(\mathbf{x},\mathbf{y})$, \mathcal{H} a restricted hypothesis space (e.g. parametric model).

Learn h* directly via empirical risk minimization:

$$\underset{\mathbf{h} \in \mathcal{H}}{\operatorname{arg \, min}} \sum_{i=1}^{N} L(\mathbf{h}(\mathbf{x}^{(i)}), \mathbf{y}^{(i)}).$$

Bayes-optimal under two conditions:

- ▶ statistical sufficiency $\mathcal{D} \approx p$ (e.g. $N \to \infty$);
- ▶ model sufficiency $h^* \in \mathcal{H}$ (e.g. \mathcal{H} unrestricted).

Example: linear regression, decision tree, SVM...

Decision boundaries

 $y \in \{ blue, red \}$, zero-one error $L_{0/1} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$.

http://scikit-learn.org/

Linear regression

Linear hypotheses: $\mathcal{H} = \{\mathbf{h} \mid \mathbf{h}(\mathbf{x}) = \mathbf{A}^{\mathsf{T}}\mathbf{x} + \mathbf{b}\}.$ Reformulation: $\mathbf{x} = (1, x_1, \dots, x_d)$, so that $\mathbf{h} = \mathbf{W}^{\mathsf{T}}\mathbf{x}$.

 \mathbb{E}_{L_2} convex w.r.t. $\mathbf{W} \implies \text{closed-form solution } (\nabla \mathbb{E}_{L_2} = 0)$: $\mathbf{W}^* = (\mathbf{X}^\intercal \mathbf{X})^{-1} \mathbf{X}^\intercal \mathbf{Y}$.

Capacity, overfitting, underfitting

The higher the capacity of \mathcal{H} , the more powerful the model.

Example (polynomial regression with degree M)

$$\mathbf{x} = (x_0, x_1^1, \dots, x_d^1, \dots, x_1^M, \dots, x_d^M).$$

M increases N = 10 (fixed)

Capacity, overfitting, underfitting

The higher the capacity of \mathcal{H} , the more powerful the model.

Example (polynomial regression with degree M)

$$\mathbf{x} = (x_0, x_1^1, \dots, x_d^1, \dots, x_1^M, \dots, x_d^M).$$

M increases N = 10 (fixed)

Capacity, overfitting, underfitting

The higher the capacity of \mathcal{H} , the more powerful the model.

Example (polynomial regression with degree M)

$$\mathbf{x} = (x_0, x_1^1, \dots, x_d^1, \dots, x_1^M, \dots, x_d^M).$$

M = 9 (fixed) N increases

Measuring under/over-fitting

Split \mathcal{D} into a training set \mathcal{D}_{train} and a test set \mathcal{D}_{test} .

Test error increases \implies overfitting...

Always evaluate your model on a separate test set !

Regularization

Restrict \mathcal{H} to consider only simple hypotheses.

Example: penalize high coefficients in \mathbf{W} .

$$\mathbf{W}^{\star} = \underset{\mathbf{W}}{\operatorname{arg min}} \sum_{i} L(\mathbf{y}^{(i)}, \mathbf{w}^{\mathsf{T}} \mathbf{x}^{(i)}) + \lambda \|\mathbf{w}\|_{2}^{2},$$

with λ a hyper-parameter.

Regularization / prior equivalence

Let $\mathcal{D} = \{\mathbf{v}^{(1)}, \mathbf{v}^{(2)}, \dots\}$ sampled from p with parameters θ .

Maximum a-posteriori (MAP) estimate:

$$\begin{array}{ll} \theta^{\star} &= \arg\max_{\theta} p(\theta|\mathcal{D}) & \text{posterior} \\ &= \arg\max_{\theta} p(\theta|\mathcal{D}) \times p(\mathcal{D}) \\ &= \arg\max_{\theta} p(\theta,\mathcal{D}) & \text{joint} \\ &= \arg\max_{\theta} p(\mathcal{D}|\theta) \times p(\theta) & \text{likelihood} \times \text{prior} \\ &= \arg\max_{\theta} \prod_{i} p(\mathbf{v}^{(i)}|\theta) \times p(\theta) & \text{(i.i.d. hypothesis)} \\ &= \arg\max_{\theta} \sum_{i} \log p(\mathbf{v}^{(i)}|\theta) + \log p(\theta) & \text{log-lik.} + \text{reg} \end{array}$$

Regularization / prior equivalence

Let
$$\mathcal{D} = \{(x, y)^{(1)}, (x, y)^{(2)}, \dots\}.$$

Assume a Gaussian model and a Gaussian prior: $p(y|x,\theta) = \mathcal{N}(y|\beta x,\sigma^2)$ and $p(\beta) = \mathcal{N}(\beta|0,\lambda^{-1})$

$$\beta^{\star} = \arg\max_{\beta} \prod_{i} \mathcal{N}(y^{(i)}|\beta x^{(i)}, \sigma^{2}) \times \mathcal{N}(\beta|0, \lambda^{-1})$$

$$= \arg\min_{\beta} \sum_{i} \frac{1}{\sigma^{2}} (y^{(i)} - \beta x^{(i)})^{2} + \lambda \beta^{2}$$
 (neg. log)

In short:

- ▶ L_2 regularization \approx Gaussian prior;
- ▶ L_1 regularization \approx Laplacian prior.

Measuring bias/variance

M=9, λ varies.

Repeat with different training sets of same size (N = 25).

L: 100 reps (variance).

R: average (bias).

Optimal capacity

Every model has hyper-parameters: k-NN (k, metric), SVM (kernel, C, γ), decision tree (depth), neural net (weight decay, learning rate). Choosing the model is also a hyper-parameter.

Again, using \mathcal{D}_{test} too much for tuning leads to overfitting...

Hyper-parameter tuning

Let θ be our parameters and λ our hyper-parameters.

Split \mathcal{D} into \mathcal{D}_{train} / \mathcal{D}_{valid} / \mathcal{D}_{test} .

Grid search:

- 1. for each $\lambda_i \in \{\lambda_1, \lambda_2, \dots\}$, learn θ_i^* on \mathcal{D}_{train} ;
- 2. keep parameters θ^* that perform best on \mathcal{D}_{valid} ;
- 3. evaluate θ^* on \mathcal{D}_{test} .

Do not repeat!

Main idea

For a given \mathbf{x} , let $(1,\ldots,N)$ be an ordering of $\mathcal D$ such that $\mathrm{dist}(\mathbf{x},\mathbf{x}^{(1)})\leq\cdots\leq\mathrm{dist}(\mathbf{x},\mathbf{x}^{(N)})$, and $\mathbf{Y}_{\mathrm{nb}(\mathbf{x})}=\{\mathbf{y}^{(i)}|i\leq K\}$. Then,

$$\mathbf{h}^{\star}(\mathbf{x}) = \underset{\hat{\mathbf{y}}}{\operatorname{arg\,min}} \sum_{i=1}^{K} L(\hat{\mathbf{y}}, \mathbf{y}^{(i)}).$$

Parameters: number of neighbours (K), distance metric (dist).

In practice

Pros:

- + infinite capacity
- + no training

Cons:

- expensive predictions, O(N) in memory and time
- distance metric in high dimensions?

Variants: neighbours weighting

$$\sum_{i=1}^{K} (d_{\mathsf{max}} - \mathsf{dist}(\mathbf{x}, \mathbf{x}^{(i)})) L(\hat{\mathbf{y}}, \mathbf{y}^{(i)}).$$

Classification and Regression Tree (CART)

Decision tree

For a given \mathbf{x} , let $\mathbf{Y}_{\text{bin}(\mathbf{x})} = {\mathbf{y}^{(i)}|\text{bin}(\mathbf{x}^{(i)}) = \text{bin}(\mathbf{x})}$. Then,

$$\label{eq:hopping_problem} \mathbf{h}^{\star}(\mathbf{x}) = \underset{\hat{\mathbf{y}}}{\text{arg min}} \sum_{\mathbf{y} \in \mathbf{Y}_{\mathbf{bin}(\mathbf{x})}} L(\hat{\mathbf{y}}, \mathbf{y}).$$

Parameters: construction strategy, max depth, min leaf size.

Build the tree

Learning algorithm: start for a single root node, then repeat

- 1. pick one expandable node (non-terminal)
- 2. pick the (x_j, θ) split that maximizes the information gain;
- 3. create child nodes: $(x_j \le \theta)$ and $(x_j > \theta)$.

Information gain (IG):

$$IG(\mathcal{D}_{par}) = N_{par}I(\mathcal{D}_{par}) - N_{left}I(\mathcal{D}_{left}) - N_{right}I(\mathcal{D}_{right}).$$

For classification:

- Gini impurity: $\sum_{\mathbf{y} \in \mathcal{V}} p(\mathbf{y})(1 p(\mathbf{y}))$
- ► Entropy: $-\sum_{\mathbf{y} \in \mathcal{Y}} p(\mathbf{y}) \log p(\mathbf{y})$

For regression:

▶ Variance reduction: $\sum_{y \in \mathcal{D}} (y - \bar{y})^2$

In practice

Pros:

- + infinite capacity
- + fast learning, parallelizable
- + fast prediction, $O(\log(N))$

Cons:

- orthogonal cuts
- high variance or high bias

Random Forest

Ensemble learning

Intuitive idea: combine weak learners into a strong one.

Example (independent binary oracles)

Individual oracle error: 30%. Voting error over *m* oracles:

$$\sum_{k=m/2+1}^{m} \binom{m}{k} 0.3^{k} 0.7^{m-k}.$$

Fast training \implies decisions trees.

Models not independent in practice ⇒ encourage diversity.

- bagging (bootstrap aggregation)
- random feature subsets
- no pruning

In practice

Pros:

- + good generalization
- + fast learning, parallelizable
- + fast prediction, $O(M \log(N))$

Cons:

- orthogonal cuts
- relies on heuristics

Variants:

- Rotation forest (PCA projections)
- Extremely randomized trees
- Gradient boosting

Linear Support Vector Machine (SVM)

Maximum margin separating hyper-plane

Binary classification $y \in \{-1, +1\}$. Consider $\mathbf{h}(\mathbf{x}) = sign(f(\mathbf{x}))$, and $f(\mathbf{x}) = \mathbf{w}^{\mathsf{T}}\mathbf{x} + b$ (linear model).

Suppose zero error is possible, we want the separating hyper-plane with maximum margin.

Zero error:
$$y^{(i)}(\mathbf{w}^{\mathsf{T}}\mathbf{x}^{(i)}+b)>0, \ \forall i.$$

Maximum margin:

$$\begin{cases} \underset{\mathbf{w},b}{\arg\min} \frac{1}{2} \|\mathbf{w}\|_{2}^{2}, \\ \text{s.t. } y^{(i)}(\mathbf{w}^{\mathsf{T}}\mathbf{x}^{(i)} + b) > 1, \ \forall i. \end{cases}$$

Tolerate classification errors

Introduce slack variables.

$$\boldsymbol{\xi} = max(0, 1 - y \times f(\mathbf{x}))$$
 (hinge loss)

$$\begin{cases} \underset{\mathbf{w},b}{\arg\min} \frac{1}{2} \|\mathbf{w}\|_2^2 + C \sum_i \xi_i, \\ \text{s.t. } y^{(i)} (\mathbf{w}^{\mathsf{T}} \mathbf{x}^{(i)} + b) \geq 1 - \xi_i, \ \forall i, \\ \text{and } \xi_i \geq 0, \ \forall i. \end{cases}$$

⇒ convex optimization problem.

In practice

Pros:

- + elegant formulation
- + max-margin separator

Cons:

- hyper-parameter tuning (C)
- training complexity O(ND)
- linear decision boundaries

Still missing the main part: kernel trick.

Kernel Support Vector Machine (SVM)

Dual formulation

Karush-Kuhn-Tucker (KKT) multipliers (Lagrange with inequality constraints):

$$\begin{cases} \arg\max_{\alpha} - \frac{1}{2} \sum_{i,j} \alpha_i \alpha_j y^{(i)} y^{(y)} \mathbf{x}^{(i)\mathsf{T}} \mathbf{x}^{(j)}, \\ \text{s.t. } 0 \leq \alpha_i \leq \mathcal{C}, \ \forall i, \\ \text{and } \sum_i \alpha_i y^{(i)} = 0. \end{cases}$$

⇒ convex optimization problem.

Note:

- ▶ support vectors: samples where $\alpha_i > 0$;
- $f(\mathbf{x}) = \sum_{i} \alpha_{i} y^{(i)} \mathbf{x}^{(i)\mathsf{T}} \mathbf{x}$ (eq. $\mathbf{w} = \sum_{i} \alpha_{i} y^{(i)} \mathbf{x}^{(i)}$);

Kernel trick

Feature projection \implies non-linear decision boundary

$$\begin{split} \phi: \mathcal{X} &\mapsto \mathcal{Z} \\ k(\mathbf{x}, \mathbf{x}') &= \langle \phi(\mathbf{x}), \phi(\mathbf{x}') \rangle_{\mathcal{Z}} \\ f(\mathbf{x}) &= \sum_{i} \alpha_{i} y^{(i)} k(\mathbf{x}^{(i)}, \mathbf{x}) \end{split}$$
 Input Space Feature Space

Mercer's theorem: no need for an explicit ϕ , a continuous positive semi-definite kernel is enough.

Gaussian radial basis function (RBF) kernel:

- $k(\mathbf{x}, \mathbf{x}') = \exp(-\gamma \|\mathbf{x} \mathbf{x}'\|_2^2);$
- \blacktriangleright ϕ exists, with \mathcal{Z} an infinite-dimensional space.

Also: polynomial kernel, Fisher kernel, string kernel...

In practice

RBF kernel

Pros:

- + elegant formulation
- + max-margin separator
- + non-linear decision boundaries

Cons:

- hyper-parameter tuning (C, λ)
- training complexity $O(N^2D)$

Covered in next module

Pros:

- state-of-the-art on many hard problems
- + scale well to large data sets

Cons:

- requires large data sets
- no theoretical guarantee
- more an art than a science

Try by yourselves: http://playground.tensorflow.org

Decision theory

- Bayes-optimal prediction
- plug-in risk minimization
- direct risk minimization

Statistical learning

- linear regression
- the under/over-fitting (or bias/variance) problem
- regularization and hyper-parameters

Supervised learning models

- k-nearest neighbours (k-NN)
- classification and regression tree (CART)
- random forest
- support vector machine (SVM)