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Introduction

Given an observation x, make a prediction ¥.

Example

» customer bank records — solvency
» patient symptoms — disease
» apartment address, surface, year — price

» mushroom picture — variety

We have a data set D of previously observed (x,y) pairs.



Decision theory



Decision theory

Prediction

Find a mapping h from an input space X to an output space ),

h: X =Y.

Example (regression)
Y =R For a given x, we know p(y | x):

< 035 0.45

L0 A ]
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You are asked to predict a value for y. What is your answer?



Decision theory

Bayes-optimal prediction
Cost of § instead of y 7 Loss function:

L:YxY— Rsg.

Risk of h(x) =y 7 Expected loss:

Eyx[L(Y,y)] = Zp(y | x) x L(¥,y) (classification)
y

— [[py %) x LG.y)dy (regression).
y

Bayes-optimal prediction <= risk-minimization

hi(x) = argminEyL(9,y).
y



Decision theory

Example: univariate regression
Popular loss functions for regression:

> squared error: La(§,y) = >2;(¥i — vi)*;

» absolute error: L1(y,y) = >, |9i — vil;
» zero-one error: Lo(y,y) =1 for every § #y.

Illustration in R (y fixed):
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How could this affect the risk-minimizer h* ?
Because of uncertainty in p(y | x)...
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Decision theory

Example: univariate regression

For a given x:

< 0.35 0.45
S M ]
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Expected loss: 3 p(y | x)L(¥,y)
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h7,(x) =1 (mode), h} (x) = 0.3 (median), hj,(x) = 0.51 (mean).



Decision theory
Plug-in risk minimization

D a set of i.i.d. data samples {(x,y))}¥, drawn from p(x,y),
Q a restricted probabilistic model (e.g. parametric distribution).

Learn g* via maximum log-likelihood:

N
arg max Z log q(y(i) \x(i)).
9€Q oy

Risk-minimizing prediction: h*(x) = argming >, g*(y[x)L(y.y).

Bayes-optimal under two conditions:
» statistical sufficiency D =~ p (e.g. N — c0);
» model sufficiency p € Q (e.g. Q unrestricted).

Example: multinomial regression, naive Bayes. ..



Decision theory

Example: binary classification

Loss function: Expected loss:
0 1 Ey|x[L(1aY)]
0 «a Eyx[L(0,y)]
|x Y
v 19 y

Bayes-optimal prediction:

h*(x) = |p(y = 1[x) >

= p(y =0Jx) x «
=p(y =1[x) x 8

>
a+



Decision theory

Example: binary classification

Loss function: Expected loss:
L y
0 ! Eyx[L(1,y)] = p(y = 0]x) x 2
y S I Eyx[L(0,y)] = p(y = 1|x) x 5
115 0

Bayes-optimal prediction:

h*(x) = [p(y = 1|x) > 28.6%)] .



Decision theory

Direct risk minimization

D a set of i.i.d. data samples {(x,y)D}V, drawn from p(x,y),
H a restricted hypothesis space (e.g. parametric model).

Learn h* directly via empirical risk minimization:

N
arg min Z L(h(x("), y()).

heH i—1

Bayes-optimal under two conditions:
» statistical sufficiency D ~ p (e.g. N — o0);
» model sufficiency h* € H (e.g. H unrestricted).

Example: linear regression, decision tree, SVM. ..



Decision theory

Decision boundaries

01
10

y € {blue, red}, zero-one error Ly/; =

R
N——
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Statistical learning



Statistical learning

Linear regression

Linear hypotheses: H = {h | h(x) = ATx + b}.
Reformulation: x = (1, x1,...,x4), so that h = WTx.

h* = argmin, Ey y[L2(h(x), y)],
eq. W* = argminy >, [WTx() — y()|3.
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Optimization of w
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MSE (train)

E;, convex w.r.t. W = closed-form solution (VE;, = 0):
W* = (XTX)"1XTY.



Statistical learning

Capacity, overfitting, underfitting
The higher the capacity of H, the more powerful the model.

Example (polynomial regression with degree M)

_ 1 1 M M
X = (X0, X1 5o s Xgo ooy Xy X )

M increases
N = 10 (fixed)



Statistical learning

Capacity, overfitting, underfitting

The higher the capacity of H, the more powerful the model.

Example (polynomial regression with degree M)

_ 1 1 M M
X = (X0, X1 5o s Xgo ooy Xy X )
1 M=3 1 M=9
t t
0 ON\® 0
o
-1 -1
0 s 1 0 .
Mincreases

= 10 (fixed)




Statistical learning

Capacity, overfitting, underfitting

The higher the capacity of #, the more powerful the model.

Example (polynomial regression with degree M)

— 1 1 M M
(X0, XT s oo s Xy e s X1y X ).

M =9 (fixed)
N increases



Statistical learning

Measuring under/over-fitting

Split D into a training set Dy.,in and a test set Dyegt.

Test error increases = overfitting...

—e€e— Training
—6&— Test

o

0 S VR

Always evaluate your model on a separate test set !



Statistical learning

Regularization

Restrict H to consider only simple hypotheses.

Example: penalize high coefficients in W.

—argmanL x(DY + \[wl|3,

with A a hyper-parameter.

1 InA=-18 1 o—0 InA=0




Statistical learning

Regularization / prior equivalence

Let D = {v() v(® ..} sampled from p with parameters 6.

Maximum a-posteriori (MAP) estimate:

0 = arg max p(0|D) posterior
= arg max p(6|D) x p(D)
= arg maxp(Q,D) joint
= arg maxp(D|9) x p(0) likelihood x prior
= aranapr(v(i)|0) x p(6) (i.i.d. hypothesis)

=arg maxz log p(v{)|0) + log p(9) log-lik. + reg
0 .



Statistical learning

Regularization / prior equivalence

Assume a Gaussian model and a Gaussian prior:

p(ylx,0) = N(y|Bx,0?) and p(8) = N(5]0, A1)
B =arg maxH/\/ 018x1 62) x N(8]0, A1)

= arg min Z — Bx)2 4 \g? (neg. log)

In short:

» L, regularization ~ Gaussian prior;
» L regularization = Laplacian prior.



Statistical learning

Measuring bias/variance

M =9, X\ varies.

Repeat with different

training sets of same size
(N = 25).

L: 100 reps (variance).
R: average (bias).

In\=26

o

o




Statistical learning

Optimal capacity
A

Underfitting zone

Overfitting zone

Generalizat iol_l/
Ccrror -
==

- Variance
-—
- ® o o o o = ,
Optimal Capacity
capacity

Every model has hyper-parameters: k-NN (k, metric), SVM
(kernel, C, ), decision tree (depth), neural net (weight decay,
learning rate). Choosing the model is also a hyper-parameter.

Again, using Dyes: too much for tuning leads to overfitting...



Statistical learning

Hyper-parameter tuning

Let 6 be our parameters and A our hyper-parameters.
Sp“t D into Dtrain / Dvalid / Dtest-

Grid search:
1. for each A\j € {A1, Ao, ...}, learn 67 on Dypain;
2. keep parameters 0* that perform best on D, ,ji4;

3. evaluate 6* on Dies;.

Do not repeat |



K Nearest Neighbours (k-NN)



K Nearest Neighbours (k-NN)

Main idea

For a given x, let (1,..., N) be an ordering of D such that
dist(x,x(1)) < ... < dist(x,x(M), and Ynb(x) = {y|i < K}. Then,

h*( —argmln E L(y y()
K=1 K=3 K =31
2 2 2
LTI L LY :.;" s $ oo g9 e

T7 T7 x7

1 1 0 1

e & e
o c
0 0 < 0
0 1 v 20 1 w2 0 1 26

Parameters: number of neighbours (K), distance metric (dist).



K Nearest Neighbours (k-NN)

In practice
Pros:

+ infinite capacity
+ no training

Cons:
— expensive predictions, O(N) in
memory and time

— distance metric in high
dimensions ?

Variants: neighbours weighting

K
D~ (dma — dist(x,x))L(5.y7).

i=1

Input data
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Classification and Regression Tree (CART)



Classification and Regression Tree (CART)

Decision tree

For a given x, let Yyinx) = {y®|bin(x() = bin(x)}. Then,

h*(x) = arg min Z L(y,y).

Y yeYhing
T2
0-
s B
0y c
A
A B C D E

01

Parameters: construction strategy, max depth, min leaf size.

04



Classification and Regression Tree (CART)

Build the tree

Learning algorithm: start for a single root node, then repeat

1. pick one expandable node (non-terminal)
2. pick the (xj, 8) split that maximizes the information gain;
3. create child nodes: (x; < ) and (x; > 6).

Information gain (IG):

IG(Dpar) - NparI(Dpar) - N/eftl(D/eft) - Nrightl(Dright)-

For classification:
> Gini impurity: 3y, p(Y)(1 = p(y))
> Entropy: — > v, p(y) log p(y)

For regression:

> Variance reduction: Y _,(y — 7)?



Classification and Regression Tree (CART)

Decision Tree Regression
15 ° . ~—— max_depth=2 Input data Decision Tree
1 max_depth=5
10 o data
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Pros:

+ infinite capacity

+ fast learning, parallelizable
+ fast prediction, O(log(N))

Cons:

— orthogonal cuts

— high variance or high bias



Random Forest



Random Forest

Ensemble learning
Intuitive idea: combine weak learners into a strong one.

Example (independent binary oracles)

030

025

Individual oracle error: 30%.
Voting error over m oracles:

0.20

015

zm: <':) 0.3¥0.7™ .

k=m/2+1

voting error

M oracles

Fast training = decisions trees.

Models not independent in practice = encourage diversity.
> bagging (bootstrap aggregation)
» random feature subsets
> no pruning



Random Forest

In practice

PrOS. Input data Random Forest

+ good generalization
+ fast learning, parallelizable
+ fast prediction, O(M log(N))

Cons:

— orthogonal cuts

— relies on heuristics

Variants:

> Rotation forest (PCA
projections)

» Extremely randomized trees

> Gradient boosting



Linear Support Vector Machine (SVM)



Linear Support Vector Machine (SVM)

Maximum margin separating hyper-plane

Binary classification y € {—1,+1}.
Consider h(x) = sign(f(x)), and f(x) = wTx + b (linear model).

Suppose zero error is possible, we want the separating hyper-plane with
maximum margin.

Xy
Zero error:

yD(wTx() + b) >0, Vi.

Maximum margin:

1
arg min§||w||§,
w,

st. yD(wTx® + b) > 1, Vi. \( b
SN




Linear Support Vector Machine (SVM)

Tolerate classification errors

Introduce slack variables.
& =max(0,1—y x f(x)) (hinge loss)

1
arg m|n§||w||§ + CZf;,
w,b f

st yO(wTx) 4+ b) > 1-¢;, Vi,
and & >0, Vi.

= convex optimization problem.

Xz

Xy



Linear Support Vector Machine (SVM)

In practice

Pros:

+ elegant formulation

+ max-margin separator

Cons:
— hyper-parameter tuning (C)
— training complexity O(ND)

— linear decision boundaries

Still missing the main part: kernel
trick.

Input data

Linear SVM




Kernel Support Vector Machine (SVM)



Kernel Support Vector Machine (SVM)
Dual formulation

Karush-Kuhn-Tucker (KKT) multipliers (Lagrange with inequality
constraints):

1 . N
_ - v (D) L () 5 (DT 4 ()
arg max oo x\WTxU)
g 22}: iy Wy
st. 0<a; <C, Vi,

and Za;y(i) =0.

—> convex optimization problem.

Note:

» support vectors: samples where a; > 0;
> f(x) = Z’_ al-y(")x(")Tx (eq wW = Zi a,-y(i)x(i));



Kernel Support Vector Machine (SVM)

Kernel trick

Feature projection = non-linear decision boundary

P X Z /-.; 7
RY
K(x.X') = (6(x), 6(x )2 OV
F(x) = 52, iy Dk(x), ) = b
Input Space Feature Space

Mercer’s theorem: no need for an explicit ¢, a continuous positive

semi-definite kernel is enough.
Gaussian radial basis function (RBF) kernel:
> k(x,x") = exp(—[x — X[13);

> ¢ exists, with Z an infinite-dimensional space.

Also: polynomial kernel, Fisher kernel, string kernel. ..



Kernel Support Vector Machine (SVM)

In practice

RBF kernel

Pros:

+ elegant formulation
+ max-margin separator

-+ non-linear decision boundaries

Cons:

— hyper-parameter tuning (C, )
— training complexity O(N?D)

Input data RBF SVM




Artificial Neural Network (ANN)



Artificial Neural Network (ANN)

Covered in next module

Pros:

+ state-of-the-art on many hard
problems

+ scale well to large data sets

Cons:

— requires large data sets
— no theoretical guarantee

— more an art than a science

Try by yourselves:
http://playground.tensorflow.org

Input data

Neural Net



http://playground.tensorflow.org

Course summary



Course summary

Decision theory
» Bayes-optimal prediction
» plug-in risk minimization

» direct risk minimization

Statistical learning
» linear regression
» the under/over-fitting (or bias/variance) problem

> regularization and hyper-parameters

Supervised learning models
> k-nearest neighbours (k-NN)
> classification and regression tree (CART)
» random forest

> support vector machine (SVM)
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